Man mag es nicht glauben, aber das Rad-Schiene-System soll für Geschwindigkeiten bis etwa 1000 km/h geeignet sein, also etwas mehr als die Fluggeschwindigkeit von gängigen Düsenflugzeugen. Das wäre technisch irgendwann einmal möglich, wenn man dafür spezielle Bahnstrecken und spezielle Züge entwickelt und baut.
Die zulässige Höchstgeschwindigkeit von drei Einflussgrößen ab:
Von der Strecke, die eine Höchstgeschwindigkeit hat, mit der sie noch sicher befahren werden kann, was wiederum vom Signalsystem, der Oberleitung, dem Oberbau und den Schienen und vor allem auch von den Kurvenradien und der Überhöhung der Kurven abhängt. In Deutschland sind auch Bahnübergänge wichtig, denn auf Strecken, wo es Bahnübergänge gibt, darf nicht schneller als 160 km/h gefahren werden. Deshalb müssen Bahnübergänge zuerst dort durch Brücken ersetzt werden, wo die Geschwindigkeit auf 200 km/h erhöht werden soll und nicht dort, wo die gefährlichsten Bahnübergänge sind.
Die Lok oder das Triebfahrzeug hat eine zulässige Höchstgeschwindigkeit und bei lokbespannten Zügen hat auch jeder Wagen eine Höchstgeschwindigkeit. Dies hängt vor allem von den Bremsen ab, aber sicher auch von den Laufwerken und vielleicht davon, welche Signalsysteme im Triebfahrzeug oder im Steuerwagen unterstützt werden. So haben viele Strecken parallel traditionelle Signale für Fahrten bis 160 km/h und ein neueres System, z.B. LZB, für schnellere Fahrten.
Eine Besonderheit sind Neigezüge, die eventuell einen Streckenabschnitt mit einer höheren Geschwindigkeit befahren als andere Züge. Dabei ist aber zu beachten, dass die Gleise bei einem Neigezug gleich stark belastet werden wie bei einem anderen Zug, deshalb könnten aus Sicherheitsgründen alle anderen Züge gleich schnell wie die Neigezüge fahren, man verzichtet aber aus Komfortgründen darauf. Gemäß Hajo Zierkes Seite hat man in den Vereinigten Staaten diese Komfortgrenzen zu Sicherheitsvorschriften gemacht, so dass dort Neigezüge wenig bringen können.
Die erforderliche Leistung nimmt grob mit der dritten Potenz der Geschwindigkeit zu. Eigentlich ist es ein Polynom dritten Grades, also:
Aber bei großen Geschwindigkeiten dominiert der Term . Da man aber bei höheren Geschwindigkeiten die Strecke schneller bewältigt, steigt der Energieverbrauch nur etwa mit dem Quadrat der Geschwindigkeit. Um es genau zu berechnen muss man noch die Beschleunigungs- und Abbremsvorgänge berücksichtigen, die den Gewinn der höheren Geschwindigkeit auch etwas schmälern.
Natürlich muss man für höhere Geschwindigkeiten mehr in die Infrastruktur und das Rollmaterial investieren und je unterschiedlicher die Zuggeschwindigkeiten sind, desto kleiner wird die Kapazität auf Mischbetriebsstrecken oder desto eher braucht man getrennte Hochgeschwindigkeitsstrecken. Der Verschleiß an Rollmaterial und Schienen scheint bei heute häufig gefahrenen Geschwindigkeiten bis etwa 300 km/h noch kein großes Problem zu sein und die Sicherheit ist verglichen mit anderen Verkehrsmitteln auch recht gut.
Was ist nun die richtige Geschwindigkeit für die schnellsten Züge? Vielleicht liegt die heute etwa im Bereich von 250-300 km/h. Diese Geschwindigkeiten zu fahren bringt die Möglichkeit mit sich, Verkehr vom Flugzeug und von der Straße in die Züge zu verlagern und sie bringt auch mit der so generierten Verlagerung noch eine Reduzierung der Emissionen an Luftschadstoffen und Treibhausgasen mit sich. Was Lärmemissionen betrifft, will ich anderen Seiten den Vorrang überlassen, hier genaue Messungen zu veröffentlichen, und beschränke mich auf das Erlebnis, von einer Brücke aus gleichzeitig einen ICE und ein auf der parallel verlaufenden Straße fahrendes Motorrad zu sehen. Das Motorrad fuhr wahrscheinlich mit 1-2 Personen die erlaubten 100 km/h und der ICE mit einigen hundert Fahrgästen die erlaubten 250 km/h. Dabei war das Motorrad viel lauter.
Bei Geschwindigkeiten über 300 km/h ist der Zeitgewinn auf vielen Strecken nicht mehr so groß, aber der Energieverbrauch steigt etwa quadratisch mit der Geschwindigkeit an, man schmälert also dann irgendwann den Vorteil kleinerer Emissionen, auch wenn die Reduzierung von Unfallopferzahlen sicher ein großer Vorteil bleibt. Es gibt auch Situationen, wo eine bestimmte Fahrzeit zwischen zwei Bahnhöfen unterschritten werden muss, damit man an beiden Enden gute Anschlüsse bieten kann, was vielleicht auch etwas höhere Geschwindigkeiten in diesem Abschnitt rechtfertigen könnte. Generell glaube ich aber, dass in der heutigen Zeit etwa der Geschwindigkeitsbereich von 250-300 für die schnellsten Züge sinnvoll ist.
Wenn man Strecken komplett unterirdisch verlegen würde und in den Tunneln Vakuum oder Unterdruck hätte, könnte man den Luftwiderstand sehr stark verringern und dann wäre es vielleicht auch möglich, mit sehr geringem Energieverbrauch noch wesentlich schneller zu fahren, allerdings wären die Bahnhöfe komplizierter, weil man irgendwo eine Trennung zwischen Strecken mit Vakuum und Bahnsteigen mit Normaldruck haben müsste, sei es mit Bahnsteigtüren und luftdichten Andockvorrichtungen an die Züge oder sei es mit Druckschleusen im Bereich der Bahnhofseinfahrten, was auf jeden Fall den technischen Aufwand und wohl auch den Zeitaufwand für die Halte in die Höhe treiben würde. Die Idee geistert für die Schweiz unter dem Namen „SwissMetro“ immer wieder einmal herum, wobei es in dem Fall auch eine Magnetschwebebahn sein könnte, weil das System durch die Tunnelstrecken sowieso komplett vom übrigen Streckennetz getrennt wäre. Die üblichen Finanzprobleme heutiger Staaten lassen solche Ideen aber in den nächsten paar Jahrzehnten nicht zu.
Schreibe einen Kommentar